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Indexing Process



Processing Text

• Converting documents to index terms 
• Why? 
– Matching the exact string of characters typed by 

the user is too restrictive 
• i.e., it doesn’t work very well in terms of 

effectiveness 

– Not all words are of equal value in a search 
– Sometimes not clear where words begin and end 

• Not even clear what a word is in some languages 
– e.g., Chinese, Korean



Text Statistics
• Huge variety of words used in text but 
• Many statistical characteristics of word 

occurrences are predictable 
– e.g., distribution of word counts 

• Retrieval models and ranking algorithms 
depend heavily on statistical properties of 
words 
– e.g., important words occur often in 

documents but are not high frequency in 
collection



Zipf’s Law
• Distribution of word frequencies is very skewed 
– a few words occur very often, many words hardly 

ever occur 
– e.g., two most common words (“the”, “of”) make up 

about 10% of all word occurrences in text documents 

• Zipf’s “law” (more generally, a “power law”): 
– observation that rank (r) of a word times its 

frequency (f) is approximately a constant (k) 
• assuming words are ranked in order of decreasing 

frequency 

– i.e.,  r.f ≈ k or  r.Pr ≈ c, where Pr is probability of 
word occurrence and c ≈ 0.1 for English



Zipf’s Law



News Collection (AP89) Statistics

Total documents                
84,678 
Total word occurrences       39,749,179 
Vocabulary size             198,763 
Words occurring > 1000 times         
4,169 
Words occurring once               
70,064

Word        Freq.           r              Pr(%)  r.Pr 
assistant     5,095        1,021         .013              
0.13 
sewers          100      17,110    2.56 × 10−4      
0.04 
toothbrush      10      51,555    2.56 × 10−5      
0.01 
hazmat              1    166,945    2.56 × 10−6      
0.04



Top 50 Words from AP89



Zipf’s Law for AP89

• Log-log plot: Note problems at high and low frequencies



Zipf’s Law

• What is the proportion of words with a 
given frequency? 
–Word that occurs n times has rank rn = k/n 
– Number of words with frequency n is 
• rn − rn+1  =  k/n − k/(n + 1)  =  k/n(n + 1) 

– Proportion found by dividing by total number 
of words = highest rank = k 

– So, proportion with frequency n is 1/n(n+1)



Zipf’s Law 

• Example word  
    frequency ranking 
!
!

!
• To compute number of words with frequency 

5,099  
– rank of “chemical” minus the rank of “summit” 
– 1006 − 1002 = 4



Example

• Proportions of words occurring n times in 
336,310 TREC documents 

• Vocabulary size is 508,209



Vocabulary Growth

• As corpus grows, so does vocabulary size 
– Fewer new words when corpus is already large 

• Observed relationship (Heaps’ Law):  
  

               v = k.nβ 

       where v is vocabulary size (number of unique 
words),                 n is the number of  words in 
corpus, 

  k, β are parameters that vary for each corpus    
(typical values given are 10 ≤ k ≤ 100 and β ≈ 0.5)    



AP89 Example



Heaps’ Law Predictions

• Predictions for TREC collections are 
accurate for large numbers of words 
– e.g., first 10,879,522 words of the AP89 

collection scanned 
– prediction is 100,151 unique words 
– actual number is 100,024 

• Predictions for small numbers of words 
(i.e.    < 1000) are much worse



GOV2 (Web) Example



Web Example

• Heaps’ Law works with very large corpora 
– new words occurring even after seeing 30 million! 
– parameter values different than typical TREC 

values 

• New words come from a variety of sources 
• spelling errors, invented words (e.g. product, company 

names), code, other languages, email addresses, etc. 

• Search engines must deal with these large and 
growing vocabularies



Estimating Result Set Size

• How many pages contain all of the query terms? 
• For the query “a b c”: 

  fabc = N · fa/N · fb/N · fc/N = (fa · fb · fc)/N2 

!
• Assuming that terms occur independently 
• fabc is the estimated size of the result set  

• fa, fb, fc are the number of documents that terms a, b, 
and c occur in 

• N is the number of documents in the collection



GOV2 Example

Collection size (N) is 
25,205,179



Result Set Size Estimation

• Poor estimates because words are not 
independent 

• Better estimates possible if co-
occurrence information available 
 P(a ∩ b ∩ c) = P(a ∩ b) · P(c|(a ∩ b)) 
 ftropical∩fish∩aquarium = ftropical∩aquarium · ffish∩aquarium/faquarium  
  = 1921 · 9722/26480 = 705 
ftropical∩fish∩breeding = ftropical∩breeding · ffish∩breeeding/fbreeding  
  = 5510 · 36427/81885 = 2451



Result Set Estimation

• Even better estimates using initial result set 
– Estimate is simply C/s 

• where s is the proportion of the total documents 
that have been ranked, and C is the number of 
documents found that contain all the query words 

– E.g., “tropical fish aquarium” in GOV2 
• after processing 3,000 out of the 26,480 documents 

that contain “aquarium”, C = 258 
   ftropical∩fish∩aquarium = 258/(3000÷26480) = 2,277 

• After processing 20% of the documents,  
  ftropical∩fish∩aquarium = 1,778   (1,529 is real value)



Estimating Collection Size

• Important issue for Web search engines 
• Simple technique: use independence model 
– Given two words a and b that are independent 
      fab/N = fa/N · fb/N 

       N = (fa · fb)/fab 

!
– e.g., for GOV2 

  flincoln = 771,326  ftropical = 120,990  flincoln ∩ tropical = 3,018 

 N = (120990 · 771326)/3018 = 30,922,045 
     (actual number is 25,205,179)



Tokenizing

• Forming words from sequence of characters 
• Surprisingly complex in English, can be 

harder in other languages 
• Early IR systems: 
– any sequence of alphanumeric characters of 

length 3 or more  
– terminated by a space or other special 

character 
– upper-case changed to lower-case



Tokenizing
• Example: 
– “Bigcorp's 2007 bi-annual report showed profits 

rose 10%.” becomes 
– “bigcorp 2007 annual report showed profits 

rose” 

• Too simple for search applications or even 
large-scale experiments 

• Why? Too much information lost 
– Small decisions in tokenizing can have major 

impact on effectiveness of some queries



Tokenizing Problems
• Small words can be important in some queries, 

usually in combinations 
•  xp, ma, pm, ben e king, el paso, master p, gm, j lo, 

world war II 

• Both hyphenated and non-hyphenated forms of 
many words are common  
– Sometimes hyphen is not needed  

• e-bay, wal-mart, active-x, cd-rom, t-shirts  
– At other times, hyphens should be considered 

either as part of the word or a word separator 
• winston-salem, mazda rx-7, e-cards, pre-diabetes, t-

mobile, spanish-speaking



Tokenizing Problems

• Special characters are an important part of 
tags, URLs, code in documents 

• Capitalized words can have different meaning 
from lower case words 
– Bush,  Apple 

• Apostrophes can be a part of a word, a part of 
a possessive, or just a mistake 
– rosie o'donnell, can't, don't, 80's, 1890's, men's 

straw hats, master's degree, england's ten largest 
cities, shriner's



Tokenizing Problems

• Numbers can be important, including 
decimals  
– nokia 3250, top 10 courses, united 93, quicktime 

6.5 pro, 92.3 the beat, 288358  

• Periods can occur in numbers, abbreviations, 
URLs, ends of sentences, and other situations 
– I.B.M., Ph.D., cs.umass.edu, F.E.A.R. 

• Note: tokenizing steps for queries must be 
identical to steps for documents



Tokenizing Process

• First step is to use parser to identify 
appropriate parts of document to tokenize 

• Defer complex decisions to other components 
– word is any sequence of alphanumeric characters, 

terminated by a space or special character, with 
everything converted to lower-case 

– everything indexed 
– example: 92.3 → 92 3 but search finds documents 

with 92 and 3 adjacent 
– incorporate some rules to reduce dependence on 

query transformation components



Tokenizing Process

• Not that different than simple tokenizing 
process used in past 

• Examples of rules used with TREC 
– Apostrophes in words ignored 
• o’connor → oconnor  bob’s → bobs 

– Periods in abbreviations ignored 
• I.B.M. → ibm  Ph.D. → ph d



Stopping

• Function words (determiners, prepositions) 
have little meaning on their own 

• High occurrence frequencies 
• Treated as stopwords (i.e. removed)  
– reduce index space, improve response time, 

improve effectiveness 

• Can be important in combinations 
– e.g., “to be or not to be”



Stopping

• Stopword list can be created from high-
frequency words or based on a standard list 

• Lists are customized for applications, 
domains, and even parts of documents 
– e.g., “click” is a good stopword for anchor text 

• Best policy is to index all words in 
documents, make decisions about which 
words to use at query time



Stemming
• Many morphological variations of words 
– inflectional (plurals, tenses) 
– derivational (making verbs nouns etc.) 

• In most cases, these have the same or very 
similar meanings (but cf. “building”) 

• Stemmers attempt to reduce morphological 
variations of words to a common stem 
– morphology: many-many; stemming: many-one 
– usually involves removing suffixes 

• Can be done at indexing time or as part of 
query processing (like stopwords)



Stemming
• Generally a small but significant 

effectiveness improvement 
– can be crucial for some languages 
– e.g., 5-10% improvement for English, up to 

50% in Arabic

Words with the Arabic root ktb



Stemming

• Two basic types 
– Dictionary-based: uses lists of related words 
– Algorithmic: uses program to determine 

related words 

• Algorithmic stemmers 
– suffix-s: remove ‘s’ endings assuming plural 
• e.g., cats → cat, lakes → lake, wiis → wii 
• Many false negatives: supplies → supplie 
• Some false positives: ups → up



Porter Stemmer

• Algorithmic stemmer used in IR 
experiments since the 70s 

• Consists of a series of rules designed to 
the longest possible suffix at each step 

• Effective in TREC 
• Produces stems not words 
• Makes a number of errors and difficult to 

modify



Porter Stemmer
• Example step (1 of 5)



Porter Stemmer

• Porter2 stemmer addresses some of these issues 
• Approach has been used with other languages



Krovetz Stemmer

• Hybrid algorithmic-dictionary 
– Word checked in dictionary 

• If present, either left alone or replaced with 
“exception” 

• If not present, word is checked for suffixes that could 
be removed 

• After removal, dictionary is checked again 

• Produces words not stems 
• Comparable effectiveness 
• Lower false positive rate, somewhat higher 

false negative



Stemmer Comparison



Phrases
• Many queries are 2-3 word phrases 
• Phrases are 
– More precise than single words 

• e.g., documents containing “black sea” vs. two words 
“black” and “sea” 

– Less ambiguous 
• e.g., “big apple” vs. “apple” 

• Can be difficult for ranking 
• e.g., Given query “fishing supplies”, how do we score 

documents with 
– exact phrase many times, exact phrase just once, individual 

words in same sentence, same paragraph, whole document, 
variations on words?



Phrases

• Text processing issue – how are phrases 
recognized? 

• Three possible approaches: 
– Identify syntactic phrases using a part-of-

speech (POS) tagger 
– Use word n-grams 
– Store word positions in indexes and use 

proximity operators in queries



POS Tagging

• POS taggers use statistical models of text 
to predict syntactic tags of words 
– Example tags:  
• NN (singular noun), NNS (plural noun), VB (verb), 

VBD (verb, past tense), VBN (verb, past 
participle), IN (preposition), JJ (adjective), CC 
(conjunction, e.g., “and”, “or”), PRP (pronoun), 
and MD (modal auxiliary, e.g., “can”, “will”). 

• Phrases can then be defined as simple 
noun groups, for example



Pos Tagging Example



Example Noun Phrases



Word N-Grams

• POS tagging can be slow for large collections 
• Simpler definition – phrase is any sequence of 

n words – known as n-grams 
– bigram: 2 word sequence, trigram: 3 word 

sequence, unigram: single words 
– N-grams also used at character level for 

applications such as OCR 
• N-grams typically formed from overlapping 

sequences of words 
– i.e. move n-word “window” one word at a time in 

document



N-Grams

• Frequent n-grams are more likely to be 
meaningful phrases 

• N-grams form a Zipf distribution 
– Better fit than words alone 

• Could index all n-grams up to specified 
length 
– Much faster than POS tagging 
– Uses a lot of storage 

• e.g., document containing 1,000 words would contain 
3,990 instances of word n-grams of length 2 ≤ n ≤ 5



Google N-Grams

• Web search engines index n-grams 
• Google sample (frequency > 40): 
!
!
!
!
!

• Most frequent trigram in English is “all rights 
reserved” 
– In Chinese, “limited liability corporation”



Document Structure and Markup

• Some parts of documents are more 
important than others 

• Document parser recognizes structure 
using markup, such as HTML tags 
– Headers, anchor text, bolded text all likely to 

be important 
– Metadata can also be important 
– Links used for link analysis



Example Web Page



Example Web Page



Link Analysis

• Links are a key component of the Web 
• Important for navigation, but also for 

search 
– e.g., <a href="http://example.com" >Example 

website</a> 
– “Example website” is the anchor text 
– “http://example.com” is the destination link 
– both are used by search engines



Exercise: Link Analysis

•  Assumption 1: A link on the web is a 
quality signal – the author of the link 
thinks that the linked-to page is high-
quality. 

• Assumption 2: The anchor text describes 
the content of the linked-to page. 

• Is assumption 1 true in general? 
• Is assumption 2 true in general?



Anchor Text

• Used as a description of the content of 
the destination page 
– i.e., collection of anchor text in all links 

pointing to a page used as an additional text 
field 

• Anchor text tends to be short, 
descriptive, and similar to query text 

• Retrieval experiments have shown that 
anchor text has significant impact on 
effectiveness for some types of queries 
– i.e., more than PageRank



PageRank
• Billions of web pages, some more 

informative than others 
• Links can be viewed as information about 

the popularity (authority?) of a web page 
– can be used by ranking algorithm 

• Inlink count could be used as simple 
measure 

• Link analysis algorithms like PageRank 
provide more reliable ratings 
– less susceptible to link spam



Random Surfer Model
• Browse the Web using the following algorithm: 
– Choose a random number r between 0 and 1 
– If r < λ: 

•  Go to a random page 

– If r ≥ λ: 
• Click a link at random on the current page 

– Start again 

• PageRank of a page is the probability that the 
“random surfer” will be looking at that page 
– links from popular pages will increase PageRank of 

pages they point to



Dangling Links

• Random jump prevents getting stuck 
on pages that 
– do not have links 
– contains only links that no longer point to 

other pages 
– have links forming a loop 

• Links that point to the first two types 
of pages are called dangling links 
–may also be links to pages that have not 

yet been crawled



PageRank

• PageRank (PR) of page C = PR(A)/2 + PR(B)/1 
• More generally,  
!

!
– where Bu is the set of pages that point to u, and Lv 

is the number of outgoing links from page v (not 
counting duplicate links)



PageRank

• Don’t know PageRank values at start 
• Assume equal values (1/3 in this case), then 

iterate: 
– first iteration: PR(C) = 0.33/2 + 0.33 = 0.5, PR(A) = 

0.33, and PR(B) = 0.17 
– second: PR(C) = 0.33/2 + 0.17 = 0.33, PR(A) = 0.5, 

PR(B) = 0.17 
– third: PR(C) = 0.42, PR(A) = 0.33, PR(B) = 0.25 

• Converges to PR(C) = 0.4, PR(A) = 0.4, and 
PR(B) = 0.2



PageRank

• Taking random page jump into account, 
1/3 chance of going to any page when r < λ 

• PR(C) = λ/3 + (1 − λ) · (PR(A)/2 + PR(B)/1) 
• More generally, 
!
!
!

– where N is the number of pages, λ typically 
0.15





A PageRank Implementation

• Convergence check 
– Stopping criteria for this types of PR algorithm typically is of the 

form ||new - old|| < tau where new and old are the new and 
old PageRank vectors, respectively.  

– Tau is set depending on how much precision you need. 
Reasonable values include 0.1 or 0.01. If you want  really fast, 
but inaccurate convergence, then you can use something like 
tau=1.  

– The setting of tau also depends on N (= number of documents in 
the collection), since ||new-old|| (for a fixed numerical 
precision) increases as N increases, so you can alternatively 
formulate your convergence criteria as ||new – old|| / N < tau.  

– Either the L1 or L2 norm can be used. 
 



Link Quality

• Link quality is affected by spam and other 
factors 
– e.g., link farms to increase PageRank 
– trackback links in blogs can create loops 
– links from comments section of popular blogs 
• Blog services modify comment links to contain 
rel=nofollow attribute 
• e.g., “Come visit my <a rel=nofollow 

href="http://www.page.com">web page</a>.”



Trackback Links


